SANTOS, R. C.; http://lattes.cnpq.br/3151638220591202; SANTOS, Renato Correia dos.
Resumo:
The process for manufacturing a ceramic part consists of a sequence of steps, four major steps: preparation of the dough, shaping, drying and firing. It is important to note that the properties of ceramics are related to the initial characteristics of the raw material, such as particle size, chemical composition, mineralogical composition and processing parameters. Within this context, this study aimed to evaluate the influence of the characteristics of the masses and processing variables on the microstructure and technological properties of products obtained from the mass of red ceramic. clays were used and a mass provided by red ceramic industries of Pernambuco and Paraíba States. Clays and mass spectra were processed and then issued as well as the masses, characterized by the granulometric analysis techniques and evaluation of the characteristics of plasticity, as well as through chemical, mineralogical and thermal analysis. The specimens were shaped by pressing and extrusion and subsequently subjected to burning at temperatures of 800, 900, 1000, 1100 and 1200°C, heating rate of 5°C/min and residence time in the maximum temperature of 60 and 180 min. After heat treatment, an evaluation of the variation in the burning color according to the above temperatures was performed and analyzed technological properties (mass loss on ignition linear firing shrinkage, water absorption, porosity, apparent specific gravity and strength mechanical bending in three points), the phases formed for different heat treatments and the morphologies of the fracture surfaces of the specimens. The results showed that the interaction between the granulometric characteristics, mineralogical and chemical samples, depending on the type of forming process used and the set firing cycle, result in significant changes on the microstructure, an impact on the mechanical properties of the final product.