Abstract:
Miraculins are glycoproteins that displays a remarkable property in bitter to sweet taste conversion. As miraculin does not have any taste and has a low calorie, this protein can be used as sweeteners targeted to patients with diseases related to excessive sugar consumption. Studies have shown that members of miraculins protein family also display inhibitor activity against the Kunitz trypsin, acting as natural agents of plant defense against pests and predators. In this context, miraculin proteins are of great relevance for biotechnological applications. The aim of this research was to characterize structurally and functionally two miraculins of Citrus sinensis using in silico tools. Tridimensional models were built and validated for CsMir1 and CsMir4 miraculins, Acryrthosiphon pisum trypsin and for Mus musculus mT1R2-T1R3 receptor. Homodimeric and hetrodimeric models were generated for miraculins (CsMir1, CsMir4) and mT1R2-T1R3, respectively. Molecular docking simulations were performed to investigate the trypsin inhibitory activity and taste conversion activity of CsMir1 and CsMir4. The results showed that the predicted models were reliable and presented good quality parameters. The monomeric CsMir1 miraculin bound to A. pisum trypsin, while its dimeric form bound to ATD domain of the mT1R2-T1R3, although its potential as trypsin inhibitor and bitter/sweet taste modifier were minor than that presented by its homologous CsMir4. The dimeric form of CsMir4 bound to mT1R2-T1R3 receptor in the ATD domain, which strongly suggests bitter/sweet taste modifier activity in M. musculus.