BERNARDO, L. F. S.; http://lattes.cnpq.br/9457954633151479; BERNARDO, Leomaques Francisco Silva.
Résumé:
In this work we study polynomial identities and central polynomials for matrix algebras. More precisely, we present the description of the identities and Zn-graded and Z-graded central polynomials for the algebra Mn(K) (the n x n matrices over the field K) when the characteristic of K is zero. Afterwards we give the description or the ordinary (nongraded) central polynomials for the algebra m2(K), the 2 x 2 matrices over K, assuming the field of characteristic zero. Finally, we present two classical constructions of central polynomials for Mn(K). These appeared as an answer to a problem posed by Kaplansky in 1956 about the existence of nontrivial central polynomials for that algebra.