SILVA, D. R. R.; http://lattes.cnpq.br/2106670839284505; SILVA, Désio Ramirez da Rocha.
Resumo:
In this work, based on a serie of papers by David Ho , it is proved a theorem
on the existence of a weak solution to the initial value problem for the Navier-Stokes
equations for a one space dimension ow of a compressible uid. It is assumed the
absence of external forces and that the pressure is a continuous positive increasing
function of density with the derivative also continuous. Concerning the initial data,
they are allowed to have large jump discontinuities, such as piecewise constant functions,
in particular Riemann data. The proof of the theorem is based on a sequence
of lemmas and propositions which give estimates on the approximate smooth solutions
obtained under regularized data. The nal solution is obtained by a limit process on
the approximate solutions.