ARAÚJO, B. S. V.; http://lattes.cnpq.br/0944914635085392; ARAÚJO, Bruno Sérgio Vasconcelos de.
Abstract:
In this work is presented a study about the existence and uniqueness of traveling
waves solutions for two classes of differential equations. The first of them is a
system modeling a temperature front propagation in a porous media. This model
come from a thermal method applied to oil recovery in petroleum engineering. For
this model it is proved the existence and uniqueness of a traveling wave solution for
a range of propagation velocities above a critical value. The existence is proved by
the geometric singular perturbation technique and the uniqueness by the Melnikov
Integral. The second class is a reaction-diffusion equation known in literature as
the KPP equation. This equation come from isothermal autocatalytic chemical
reactions problems. By analogous techniques used in the first class are obtained
analogous results on the existence and uniqueness of traveling wave solutions. The
workfinisheswiththespectralstabilitystudyofthetravelingwaveswithnoncritical
velocities of the KPP equation under perturbations in a weighted Banach space.