ARAÚJO, L. D. A.; http://lattes.cnpq.br/4617200292068975; ARAÚJO, Laise Dias Alves.
Resumo:
In this dissertation we study elementary (or good) gradings in upper block triangular
matrix algebras and the corresponding graded polynomial identities. An elementary
grading by a group G on the algebra A = UT(α1, α2, ..., αr) of upper block triangular matrices is determined by an n-tuple in Gn, where n = α1 + · · · + αr. It will
be proved that the elementary gradings on A determined by two n-tuples in Gn are
isomorphic if and only if the n-tuples are in the same orbit in the canonical bi-action
on Gn with the group Sα1 × · · · × Sαr acting on the left and the group G acting on the
right. These results will be used to prove that under suitable hypothesis (for example
if the group G has prime order) two upper block triangular matrix algebras, graded by
the group G, satisfy the same graded identities if and only if they are isomorphic (as
graded algebras).