LIMA, J. F.; http://lattes.cnpq.br/6140386020886145; LIMA, Juliana de Figueiredo.
Resumo:
In view of the future prospects for the use of CuAl Alloys with shape memory (SMA), and due to its low cost and relative ease of manufacture, the study of corrosion and hydrogen permeation in these alloys is extremely important for the scientific community and the different sectors of the industry. In the first case, its chemical stability is evaluated against corrosive environments, and in the second the susceptibility of damage by the absorbed hydrogen. In this way some limits or expansion of application of these alloys may be known. This work aims to perform a corrosion study on SMA alloys of the CuAlNi and CuAlNi (MnTi) type at different temperatures from their melt state and thermally treated; was also investigated the hydrogen permeation in the CuAlNi LMF. The corrosion study was carried out using linear polarization electrochemical techniques to determine polarization resistance (RP), corrosion rate (CR) and corrosimetry at different temperatures. On the other hand, the hydrogen permeation study by the galvanostatic-potentiostatic method and analysis of the parameters diffusivity, solubility and hydrogen permeation flux in the CuAlNi alloy, was evaluated in relation to API alloys 5L X60, 80 and ECT P110. The SMA properties was evaluated by Differential Scanning Calorimetry (DSC) as well as the verification of the products formed by corrosion was performed using Scanning Electron Microscopy (SEM). The verification of the chemical composition of the alloys was carried out using Dispersive Energy Spectroscopy (DES). The results showed that the corrosion rate increased with the temperature for the raw alloy and heat treated. However it has been found that thermally treated alloys have shown a continuous growth of CR since the start of the test due to the fact that rapid cooling from high temperatures creates an excess of vacancies in the microstructure which accelerates the corrosive processes. The DSC analyzes showed that the samples presented shape memory properties. In addition, it was possible to verify the corrosion points and their chemical composition from the SEM and EDS analyzes. Finally the hydrogen permeation tests were carried out with commercial CuAlNi alloy and prepared in the laboratory. The results showed a higher absorption or solubility of the Hydrogen in these alloys when compared with some API grade steels. This indicates at the outset that these materials are not suitable for use in hydrogen-rich atmospheres.