SANTOS, W. P.; http://lattes.cnpq.br/2536273737675849; SANTOS, Wagner Porto.
Résumé:
In this dissertation we study the entropy of a three-dimensional rotating acoustic begro hole based on the generalized uncertainty principle. In our results we obtain an area entropy and a correction term associated with the non-commutative acoustic black hole when. A introduced in the principle of generalized uncertainty assumes a specic value. However, in this method, it is not necessary to introduce the cut-off ultraviolet cut and the divergences are eliminated. In addition, the small mass approximation is not required in the original brick-wall model. We consider the acoustic metrics of black holes obtained from a relativistic fluid in a non-commutativ espace-time. The effects oft this set are such that fluids fluctuations are also affected. Sound waves inherit the non-commutativity of the fuid in space-time and may lose the Lorentz invariance. As aconsequence, the Hawking temperature is directly affected by space-time non-commutativity. Soon we will focus on the quantum statistical method to determine the entropy of an acoustic black hole using the equation of state density oft the GUP.