BRASILEIRO, M. I.; http://lattes.cnpq.br/0114356346334579; BRASILEIRO, Maria Isabel.
Resumo:
Mullite (3Al2O3∙2SiO2) is one of the crystalline phases most extensively studied from the binary system Al2O3 - SiO2, and promising ceramic due to their excellent chemical, mechanical and electrical properties. Kaolin is the main source to synthesize mullite and kaolin waste, obtained from a second stage of processing of primary kaolin, can has contents of SiO2 and Al2O3 which allows its incorporation in ceramic bodies for the production of mullite. As the temperature of the reaction of mullite is high thus increasing their costs, the use of microwave energy for processing and obtaining materials, has attracted special interest by a number of areas as engineering materials. This interest is directly linked to its simple use, and reduce the number of steps in many synthesis, improved physical properties in ceramic technology and have the combined savings energy / time achieved in the processing of many materials. The fabrication of mullite ceramic bodies from the mixture of residual kaolin and alumina, in conventional oven and microwave, for comparison. The samples were produced by uniaxial pressure of 35 MPa and sintered in powers of 80% (1,44kW) and 90% (1,62kW) with times of 10, 15, 20 and 25 min in the microwave at frequency 2,45GHz, and conventional oven at temperatures from 1400 to 1600°C with heating rate of 5°C/min and 2h. Finally the specimens were submitted to determination of physic-mechanical characterization of crystalline phases by XRD and microstructural analysis by SEM. The results showed that the mullite obtained from the microwave oven has more elongated structure of the needles when compared to the conventional oven. The sintering time and power used in the case of microwave ovens, and that the increase of temperature in a conventional oven, are key factors to consider in achieving a high level of mullitization.