http://lattes.cnpq.br/7128179294944254; SILVA, José Adailton Lima.
Abstract:
The soil and climatic conditions of the Brazilian semi-arid region have led to water scarcity, which has contributed to the fact that numerous rural families consume poor quality water that is sometimes high in salts or contaminated by pathogenic microorganisms.. The objective of this study was to evaluate, in a comparative way, how the use of an condenser coupled to a solar desalinator could increase the supply of drinking water to the rural families living with the water shortage, thus obtaining socioeconomic and environmental benefits. In this sense, some aspects were analyzed: i) maximum and minimum potential for obtaining water as a function of solar radiation and average daily temperatures; Ii) to demonstrate the efficiency of the extra condenser prototype in the
promotion of a greater obtaining of drinking water; Iii) to analyze the rainwater harvesting potential acquired with the use of solar desalinators, and to investigate possible variations in water production as a function of water salinity; Iv) to check the quality / potability of the water before and after the desalination and disinfection processes with the solar desalinizers; And v) to diagnose the socioeconomic and environmental benefits derived from the use of solar desalinizers in water treatment. With these premises, an experimental and qualiquantitative research was carried out, in the Olho D'água settlement, in the city of Seridó-PB, in the semi-arid region of Paraíba, based on
theoretical and documentary foundations; Technical visits and on-site observations; Data collection and statistical calculations; Conducting participatory research with rural families; In addition to performing laboratory analyzes of water samples. Thus, it could be observed that: the great potential of locally available solar energy makes it possible to treat salt water; The use of the extra condenser provided an average increase of 42% in obtaining water from the desalinator; The solar desalinators were efficient in the capture of rainwater, which contributed to increase the supply of water; The salinity is a factor that reduces the obtaining of water; And finally, solar desalinators have provided
numerous socio-economic and environmental benefits (low cost of implementation, good quality water, contributed to water management and safety, uses clean and renewable solar energy, among others.). Thus, it was concluded that the solar desalinator with condenser is a social and sustainable technology for the management of water resources, because it has proved to be economically viable, socially fair / disseminable, and environmentally sound.