COUTINHO, B. G.; http://lattes.cnpq.br/6283670909377416; COUTINHO, Brauner Gonçalves.
Resumen:
The RTM process is widely used for the production of high quality composite materials.
Computer simulations can play an important role in the optimization of this process,
reducing costs and increasing efficiency. In this work, it was developed a 2D transient
mathematical model for the mold filling stage in RTM process which predicts the twophase
flow (air-resin) through porous media. The set of partial differential equations,
written in boundary fitted coordinates, is discretized using the finite volume method in
a fully implicit approach and solved by using the Newton’s method. It was developed
a computational simulator with pre- and post-processing tools to help the definition of
simulations parameters and the visualization of the results. To validate the mathematical
methodology, numerical results for filling time, flow front position, injection pressure and
injection flow rate for rectilinear and radial flows were compared to analytical results from
known models. The model was employed to describe the fluid flow of a vegetable oil in a
glass fiber preform within a rectangular cavity and the results were compared to experimental
data. Some cases involving arbitrary irregular boundaries were also simulated. The
proposed model and the simulator generated physically consistent results of the process
variables.