ROCHA, C. O.; http://lattes.cnpq.br/0649529695250994; ROCHA, Clarice Oliveira da.
Resumo:
Proposals have appeared aiming at the sulfur removal in fuels by means of adsorption processes. Thus, the use of this method for the desulfurization exposing themselves like a good application potential, both economically and environmentally. The molecular sieves silicoaluminiumfosfate type (SAPO), has been presented as an excellent adsorbent with optimum thermal and hydrothermal stability and metals impregnation, making it selective adsorption. Thus was synthesized SAPO-5 (microporous) and SAPO-5M (mesoporous) impregnated with different amounts of transition metals, nickel and/or zinc. These adsorbents were used for removal of sulfur present in the mixture model (Thiophene / Heptane). For this, characterization techniques as TG, XRD, EDX and BET were performed, as well as a kinetic monitoring to assess the efficiency of adsorption and equilibrium isotherms. It was confirmed mesoporosity of SAPO-5M, since the isotherms showed the same type IV characteristics (typical of mesoporous materials). The volume and pore diameter of the microporous and mesoporous SAPO-5 were not totally blocked after impregnation. For mesoporous adsorbents an increase of four times the pore diameter in relation to the microporous. Although, has shown a reduction in the intensity of X-ray diffraction after the impregnation of the oxides of nickel and/or zinc, gave a crystallographically ordered materials. Complete removal of the template occurred, showing that the calcination was efficient and the material is stable at high temperatures. Furthermore, we were able to attenuate the amount of sulfur 500 ppm to about 96.3 ppm, a reduction of 80% for the mesoporous adsorbent Ni 0.25% 0.75% Zn/SAPO-5M, whose adsorption capacity sulfur was 40 mg S/g of adsorbent. The adsorbent of 1% Zn/SAPO-5 showed higher adsorption capacity (30 mg S/g of adsorbent) among microporous materials, achieving reduced sulfur content from 500 ppm to 163 ppm. For other supports and adsorbent was reduced by approximately 31% of the sulfur content in the mixture model. It is concluded that the synthesis of mesoporous was effective and that the material used is effective in the removal of this contaminant in the mixture model.