ALTIDIS, M. E. D.; http://lattes.cnpq.br/1197533603380870; ALTIDIS, Marina Elizabeth Dias.
Abstract:
Interesting in the use of industrial waste, such as sludge has grown both as an alternative in reducing the volume of this environmental liability as in getting a product to be used in civil building. This work aims to develop and evaluate physical and mechanical properties of concrete formed from the use of textile industry sludge, for its application in civil building. The textile sludge was dried at 110°C for twenty-four hours and milled in a grinder to get proper particle size and then subjected to the following tests: thermogravimetry, differential thermal analysis, vibrational infrared absorption spectroscopy, X-ray diffraction,chemical analysis, leaching, solubilization and optical microscopy. Concrete specimens were fabricated using the ratios 1:3 and 1:4 under levels of sludge substitution of 0 %, 3 %, 5 % and 7 % in the small aggregate, with7, 28 and 60 days of curing and performed the following tests: cone trunk reduction, compressive strength, tensile splitting strength, absorption, void ratio, specific gravity, optical microscopy, scanning electron microscopy, and leaching. The results of the textile sludgecharacterizations showed the chemical compatibility and thermal stability sufficient for its incorporation in concrete, however it was found a high content of organic matter. Again, leaching test rated the textile sludge dangerousand, because the extract leaching exceed the limit for the metals iron and manganese. The sample tests regarding solubilizatio and leaching tests showed that metals are encapsulated in concrete with levels of up to 7 % of textile sludge. In microscopy performed on test samples of concrete, there was a little interaction with the sludge constituents of the concrete. The water absorption presented increase trend when increased the amount of textile sludge, but the values were below 10 % and can be considered good quality. Regarding theresults of compressive strength occurred decrease relatedto the textile sludge content. On the ratio 1:3, with sludge levels up to 7 %, and the ratio 1: 4 up to 5 % of suldge level, the the concrete was considered moderate, and the ratio 1:4 up to 7 % of sludge, the concrete was classified as non structural.