SANTOS, F. R.; http://lattes.cnpq.br/6281772137862091; SANTOS, Fábio Reis dos.
Abstract:
Our purpose is to study the geometry of Riemannian immersions in certain semi-
Riemannian manifolds. Initially, considering linearWeingarten hypersurfaces immersed
in locally symmetric manifolds and, imposing suitable constraints on the scalar curvature,
we guarantee that such a hypersurface is either totally umbilical or isometric to
a isoparametric hypersurface with two distinct principal curvatures, one of them being
simple. In higher codimension, we use a Simons type formula to obtain new characterizations
of hyperbolic cylinders through the study of submanifolds having parallel
normalized mean curvature vector field in a semi-Riemannian space form. Finally,
we investigate the rigidity of complete spacelike hypersurfaces immersed in the steady
state space via applications of some maximum principles.