SILVA, Í. S.; http://lattes.cnpq.br/8800276401663245; SILVA, Ítallo de Sousa.
Resumo:
Recommender systems(RSs)havebecomeubiquitous,assistingusersindiscoveringrele-
vantitemsacrossvariousdomains.However,theincreasingcomplexityofRSsraisescon-
cerns abouttheirtransparencyandinterpretability,particularlyinhigh-stakesapplications.
This thesisinvestigatesthepotentialofLargeLanguageModels(LLMs)togenerateau-
tomated, human-centeredexplanationsforRSsandassessestheirfaithfulnessinreflecting
the models’internalreasoning.Weevaluatedpersonalizedmovierecommendationsand
explanationsgeneratedbyGPT-3.5Turbothroughauserstudy,measuringeffectiveness,
personalization, andpersuasiveness.Afollow-upstudyacrossmovie,song,andbookrec-
ommendations generatedbyfourLLMs(namely,GPT-4o,Llama3,Gemma2,andMixtral
8x7B) assessedthefaithfulnessoftheseexplanationsusinganaxiomaticevaluationbased
on theFeatureImportanceAgreement.OurfindingsrevealedthatwhileLLM-generatedrec-
ommendations improvedusersatisfactioncomparedtorandomselections,theexplanations
often failedtomeetfaithfulnesscriteria.Surprisingly,explanationsbasedonuserpreferences
were notconsistentlyperceivedasmorepersonalized,effective,orpersuasivethangeneric
explanations.Keycontributionsincludedauser-centricevaluationofexplanationquality,
an axiomaticmethodforassessingfaithfulness,insightsintouserpreferencesandexplana-
tion types,andananalysisoftheinterplaybetweenexplanationgoals.Notablechallenges
identified includeLLMs’limitedpersonalizationcapabilities,variabilityinoutputsdueto
non-deterministic behavior,andtheinherentblack-boxnatureofthesemodels.Thiswork
highlights thepromiseandlimitationsofLLMsinExplainableRSsandprovidesafounda-
tion forfutureresearchtoenhancethealignmentbetweenuserperceptionandexplanation
faithfulness.