ISNERI, R. J. S.; http://lattes.cnpq.br/4331691246052820; ISNERI, Renan Jackson Soares.
Résumé:
The goalofthisthesisistodevelopandstudythestructurerichofthesetof
transition typesolutionsofsomeclassesofellipticPDEsoftheform
−ΔΦu + A(x, y)V ′(u) =0 in R2, (PDE)
where ΔΦ is aquasilinearoperatorindivergenceforminvolvingthe N-function Φ that
doesnotincreasemorerapidlythanexponentialfunctions, A(x, y) is periodicinallits
argumentsand V is adouble-wellpotentialwithminimaat t = ±α. Animportant
prototypeof V is givenby V (t) =Φ(|t2−α2|), whichwasinspiredbytheclassicaldouble-
wellGinzburg-Landaupotential.Oneofourmotivationsforlookingforsuchsolutions
derivesfromaclassicAllen-Cahnmodelofphasetransitionsthatcanbeseenasavery
specialcaseof (PDE). Inourinvestigations,suchsolutionsareobtainedbyvariational
approachesusingminimizationmethodstolookforminimaofanactionfunctionalon
a reasonableclassofadmissiblefunctionscontainedintheusualOrlicz-Sobolevspace
W1,Φ
loc (R2). Weprovideseveralqualitativeandquantitativepropertiesforthesesolutions
and anumberofdi cultieshadtobeovercomeinourapproach.Forthisreason,it
wasnecessarytodevelopnewestimatesbyusingforexampleHarnacktypeinequalities
found in[91], C1,α regularitybyLieberman[67] andanewuniquenessresultforaclass
of quasilinearODEsofthetype
−(ϕ(|q′|)q′)′ + a(t)V ′(q) =0 in R, (ODE)
where a(t) belongsto L∞(R) and ϕ(t) =Φ′(t)/t for t > 0.
Among thetransitiontypesolutions,heteroclinicandsaddle-typesolutionsstand
out inthiswork.Moreover,inthisthesis,itisalsoofparticularinteresttostudythe
existence ofbasicheteroclinicsolutionsfortherelativelysimpleone-dimensionalequation
(ODE), thatis,todeterminesolutionsthatnaturallyconnectthestationarypoints ±α
and thatliebetween −α and α. Thedevelopmentofsuchsolutionsto (ODE) serves
as supportfortheconstructionofmorecomplexsolutionsofspatialphase-transition
problems. Inparticular,servestocharacterizetheasymptoticbehaviorofthesaddle-type
solution for (PDE).
Finally,wewilldiscusshowvariantsofwhatwasjustdescribedfor (PDE) hold
equally wellforprescribedmeancurvatureequationofthetype
−div
∇u p
1 + |∇u|2
!
+ A(x, y)V ′(u) =0 in R2.
Using thecuttingtechniquesforthedi erentialoperatorinvolvedwebuildauxiliary
equations oftheform (PDE) to showthatsuchequationalsohasarichvarietyof
transition typesolutionswheneverthedistancebetweentherootsofthesymmetric
potential V is smalland V is similarto V (t) =(t2 − α2)2. Not least,wewillprovide
su cientconditionsfortheexistenceofbasicheteroclinicsolutionsforthefollowing
one-dimensional model
−
q′
p
1 +(q′)2
!′
+ a(t)V ′(q) =0 in R.
Moreover,uniquenessresultsarealsoexploredunderappropriateconditionson a and V .