CUNHA, A. L.; http://lattes.cnpq.br/2786681484319610; CUNHA, Acto de Lima.
Abstract:
One of the main problems associated with membrane separation process is the
permeate flux decline, which limits the application of the process in the food sector,
pharmaceuticals, biotechnology, industrial water treatment and supply due to the
increase in the concentration of components in the membrane thus calling for a
polarization concentration. A quantification of the concentration polarization as a
function of the process conditions and the amount of feed water system is required to
estimate the performance of the system satisfactorily. The search for new
alternatives to maintain of constant permeate flow was the main motivation of this
work will be evaluated the geometric shape of the separation module, the distribution
of membranes inside the module and operating parameters such as feed flow rate,
viscosity dynamic mixing and permeability of the porous medium. In this sense, the
numerical study of the process of separating oil/water through porous membranes
was performed with the aid of the commercial software ANSYS CFX® Release 12.0.
A mathematical model in steady state, applied to an incompressible fluid flowing in
laminar and/or turbulent inside filtration modules scheme is proposed. Numerical
results show that the mathematical model used was capable of providing for the
formation and growth of the boundary layer concentration (concentration polarization)
along the length of tubular ceramic membranes. The formation of concentration
polarization was influenced by the hydrodynamic behavior of flow, geometry of the
separation and mixing and porous properties, such as viscosity and permeability,
respectively module. The model found in turbulent flow regime of a favoring mass
transfer and dispersion of the boundary layer concentration.