Repositorio Dspace/Manakin

Redes neurais artificiais aplicadas aos totais mensais precipitados para gerar vazões médias mensais na bacia hidrográfica do rio Paraguaçu. .

Mostrar el registro sencillo del ítem

dc.creator.ID GALDINO, J. F. pt_BR
dc.creator.Lattes http://lattes.cnpq.br/6553559281081240 pt_BR
dc.contributor.advisor1 SOUSA, Francisco de Assis Salviano de.
dc.contributor.advisor1ID SOUSA, F. A. S. pt_BR
dc.contributor.advisor1Lattes http://lattes.cnpq.br/5392432872592612 pt_BR
dc.contributor.referee1 SANTOS , Carlos Antonio Costa dos.
dc.contributor.referee2 NÓBREGA, Ranyeri Silva.
dc.description.resumo Este trabalho teve o objetivo de modelar e gerar vazões médias mensais a partir de dados mensais de precipitação com base na técnica matemática de Redes Neurais Artificiais. A metodologia foi aplicada aos dados plúvio-hidrométricos da Bacia Hidrográfica do rio Paraguaçu – BA, localizada no Estado da Bahia ao Nordeste do Brasil. Foram utilizados 14 postos pluviométricos espacialmente distribuídos no âmbito da Bacia e um posto fluviométrico, chamado Argoim, na sua exutória. A rede feedforward backpropagation, escolhida como a melhor para representar a modelagem chuva-vazão, utilizou em sua arquitetura o algoritmo de Retropropagação Levenberg-Marquardt, com 30 neurônios na camada intermediária e a função de transferência tangente hiperbólica sigmóide (tansig) nas camadas intermediárias e de saída. Dos resultados obtidos nesta pesquisa, a melhor correlação foi à função (tansig1) 0.999, com coeficientes de regressão de 0,999; 0,997 e 0,996. Na previsão para dois anos, os valores médios de regressão foram: 0,999 na fase de treinamento, 0,982 na fase de validação e 0,995 na fase de teste. Já o MSE médio dos 15 postos foi de 25,519, considerando os picos mais elevados de vazão. Quando se avaliou o desempenho de todo o processo de treinamento das RNAs com os menores MSE, foi possível identificar o melhor desempenho para a RNA 4. Essa RNA apresenta o maior coeficiente de eficiência 0,999 e o menor REMQ, igual a 5,051 m³/s. pt_BR
dc.publisher.country Brasil pt_BR
dc.publisher.department Centro de Tecnologia e Recursos Naturais - CTRN pt_BR
dc.publisher.program PÓS-GRADUAÇÃO EM METEOROLOGIA pt_BR
dc.publisher.initials UFCG pt_BR
dc.subject.cnpq Meteorologia pt_BR
dc.title Redes neurais artificiais aplicadas aos totais mensais precipitados para gerar vazões médias mensais na bacia hidrográfica do rio Paraguaçu. . pt_BR
dc.date.issued 2013-12-20
dc.description.abstract This work aimed to model and generates monthly average streamflows data from monthly rainfall based on the mathematical technique of Artificial Neural Networks. The methodology was applied to data – pluvio-hydrometric of Paraguaçu Basin River - BA, located in the state of Bahia in northeastern Brazil. Were used 14 rain gauges distributed spatially within the basin and one stream station called Argoim. The backpropagation feed-forward network, chosen as the best to represent the rainfallrunoff modeling, used in its architecture the algorithm Backpropagation of Levenberg - Marquardt with 30 neurons in the hidden layer, and transfer function hyperbolic tangent sigmoid (tansig) in the intermediate layers and output of the model. Of the results obtained in this study, the best correlation was the function (tansig1) 0.999, with regression coefficients of 0.99, 0.997 and 0.996. In the forecast for two years, the average regression was 0.999 in the training phase, in the validation phase 0.982 and 0.995 in the test phase. Already the average MSE of the 15 stations was 25.519, considering the higher peak flows. When assessing the performance of the whole training process of ANNs with the lowest MSE was possible to identify the best performance for RNA 4. This RNA has the highest coefficient of efficiency 0.99 and lower REMQ equal to 5.051 m³/ s. pt_BR
dc.identifier.uri http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4923
dc.date.accessioned 2019-07-18T11:04:09Z
dc.date.available 2019-07-18
dc.date.available 2019-07-18T11:04:09Z
dc.type Dissertação pt_BR
dc.subject Modelagem Hidrológica pt_BR
dc.subject Redes Neurais Artificiais pt_BR
dc.subject Climatologia do Nordeste do Brasil pt_BR
dc.subject Hydrologic Modeling pt_BR
dc.subject Artificial Neural Networks pt_BR
dc.subject Climatology of Northeast Brazil pt_BR
dc.rights Acesso Aberto pt_BR
dc.creator GALDINO, Jurandir Ferreira.
dc.publisher Universidade Federal de Campina Grande pt_BR
dc.language por pt_BR
dc.title.alternative Artificial neural networks applied to monthly totals precipitate to generate average monthly flows in the basin of the Paraguaçu river. pt_BR
dc.description.sponsorship Capes pt_BR
dc.identifier.citation GALDINO, J. F. Redes neurais artificiais aplicadas aos totais mensais precipitados para gerar vazões médias mensais na bacia hidrográfica do rio Paraguaçu. 2013. 61f. Dissertação (Mestrado em Meteorologia) – Pós-Graduação em Meteorologia, Centro de Tecnologia e Recursos Naturais, Universidade Federal de Campina Grande, Paraíba, Brasil, 2013. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4923 pt_BR


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta