SILVA, E. G.; http://lattes.cnpq.br/1275907372364893; SILVA, Edna Gomes da.
Resumo:
This work aims to study theoretical and experimentally the combined drying (convective
and microwave) of prolate spheroidal solids. A transient two-dimensional mathematical model in prolate spheroidal coordinates it was developed to predict the heat and mass transfer and simulate the moisture content and temperature distributions inside the solid considering convective boundary condition at the surface, microwave heat generation term, thermo physical properties and volume constants. The finite volume method was used for the numerical solution of the governing equations, using a regular grid. To validate the theoretical methodology microwave drying experiments were carried out with rice grains in fresh bark (variety BRSMG Conai) in three levels of absorbed power: 0.192; 0.491 and 0.694 W. Results of the effect of the solid aspect ratio, Biot numbers of mass and heat transfer, power density and attenuation factor of the electromagnetic wave on the drying and heating kinetics, and temperature and moisture
content distributions within the solid are presented and analyzed. The comparison between theoretical and experimental data of moisture content and temperature of the rice grain resulted in a good fit and estimative at the mass diffusion coefficient and convective heat and mass transfer coefficients. It was found that the increase in absorbed power provided shorter drying time and higher surface temperature of the rice grain , and that the predicted heat and mass transport coefficients tend to increase with increased power applied.